Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
2.
Front Immunol ; 15: 1325243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390335

RESUMO

Introduction: While it is established that vaccination reduces risk of hospitalization, there is conflicting data on whether it improves outcome among hospitalized COVID-19 patients. This study evaluated clinical outcomes and antibody (Ab) responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection/vaccines in patients with acute respiratory failure (ARF) and various comorbidities. Methods: In this single-center study, 152 adult patients were admitted to Ohio State University hospital with ARF (05/2020 - 11/2022) including 112 COVID-19-positive and 40 COVID-19-negative patients. Of the COVID-19 positive patients, 23 were vaccinated for SARS-CoV-2 (Vax), and 89 were not (NVax). Of the NVax COVID-19 patients, 46 were admitted before and 43 after SARS-CoV-2 vaccines were approved. SARS-CoV-2 Ab levels were measured/analyzed based on various demographic and clinical parameters of COVID-19 patients. Additionally, total IgG4 Ab concentrations were compared between the Vax and NVax patients. Results: While mortality rates were 36% (n=25) and 27% (n=15) for non-COVID-19 NVax and Vax patients, respectively, in COVID-19 patients mortality rates were 37% (NVax, n=89) and 70% (Vax, n=23). Among COVID-19 patients, mortality rate was significantly higher among Vax vs. NVax patients (p=0.002). The Charlson's Comorbidity Index score (CCI) was also significantly higher among Vax vs. NVax COVID-19 patients. However, the mortality risk remained significantly higher (p=0.02) when we compared COVID-19 Vax vs. NVax patients with similar CCI score, suggesting that additional factors may increase risk of mortality. Higher levels of SARS-CoV-2 Abs were noted among survivors, suggestive of their protective role. We observed a trend for increased total IgG4 Ab, which promotes immune tolerance, in the Vax vs. NVax patients in week 3. Conclusion: Although our cohort size is small, our results suggest that vaccination status of hospital-admitted COVID-19 patients may not be instructive in determining mortality risk. This may reflect that within the general population, those individuals at highest risk for COVID-19 mortality/immune failure are likely to be vaccinated. Importantly, the value of vaccination may be in preventing hospitalization as opposed to stratifying outcome among hospitalized patients, although our data do not address this possibility. Additional research to identify factors predictive of aberrant immunogenic responses to vaccination is warranted.


Assuntos
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Formação de Anticorpos , Vacinas contra COVID-19 , Relatório de Pesquisa , Vacinação , Imunoglobulina G
3.
PLoS One ; 18(11): e0295170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033097

RESUMO

Rotavirus is the leading cause of morbidity and mortality due to acute gastroenteritis among children under five years globally. Early diagnosis of rotavirus infection minimizes its spread and helps to determine the appropriate management of diarrhea. The aim of this study was to evaluate the performance of EpiTuub® Fecal Rotavirus Antigen Rapid Test Kit for the diagnosis of rotavirus infection among diarrheic children under five years in Ethiopian healthcare settings. A total of 537 children with diarrhea were enrolled from three referral hospitals in Amhara National Regional State, Ethiopia. The samples were tested using one-step RT-PCR and EpiTuub® Fecal Rotavirus Antigen Rapid Test Kit (KTR-917, Epitope Diagnostics, San Diego USA) in parallel. Diagnostic performance of the rapid test kit was evaluated using the one-step RT-PCR as a gold standard. The sensitivity, specificity, and predictive values of the rapid test kit were determined. Moreover, the agreement of the rapid test kit with one step RT-PCR was determined by kappa statistics and receiver operators' curve (ROC) analysis was done to assess the overall diagnostic accuracy of the rapid test kit. Fecal Rotavirus Antigen Rapid Test Kit has shown a sensitivity of 75.5% and specificity of 98.2%. The kit was also found to have 89.9% and 95.0% positive and negative predictive values, respectively. The Fecal Rotavirus Antigen Rapid Test Kit has shown a substantial agreement (78.7%, p = 0.0001) with one-step RT-PCR. The overall accuracy of the Fecal Rotavirus Antigen Rapid Test Kit was excellent with the area under the ROC curve of 86.9% (95% CI = 81.6, 92.1%) (p = .0001). Thus, Fecal Rotavirus Antigen Rapid Test is a sensitive, specific, user-friendly, rapid, and equipment-free option to be used at points of care in Ethiopian health care settings where resource is limited precluding the use of one step RT-PCR. Furthermore, the kit could be used in the evaluation and monitoring of rotavirus vaccine effectiveness in the aforementioned settings.


Assuntos
Infecções por Rotavirus , Rotavirus , Pré-Escolar , Humanos , Antígenos Virais , Estudos Transversais , Diarreia/diagnóstico , Etiópia/epidemiologia , Fezes , Rotavirus/genética , Infecções por Rotavirus/diagnóstico , Infecções por Rotavirus/epidemiologia , Sensibilidade e Especificidade , Lactente
4.
Virol J ; 20(1): 238, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848925

RESUMO

BACKGROUND: Rotavirus C (RVC) is the major causative agent of acute gastroenteritis in suckling piglets, while most RVAs mostly affect weaned animals. Besides, while most RVA strains can be propagated in MA-104 and other continuous cell lines, attempts to isolate and culture RVC strains remain largely unsuccessful. The host factors associated with these unique RVC characteristics remain unknown. METHODS: In this study, we have comparatively evaluated transcriptome responses of porcine ileal enteroids infected with RVC G1P[1] and two RVA strains (G9P[13] and G5P[7]) with a focus on innate immunity and virus-host receptor interactions. RESULTS: The analysis of differentially expressed genes regulating antiviral immune response indicated that in contrast to RVA, RVC infection resulted in robust upregulation of expression of the genes encoding pattern recognition receptors including RIG1-like receptors and melanoma differentiation-associated gene-5. RVC infection was associated with a prominent upregulation of the most of glycosyltransferase-encoding genes except for the sialyltransferase-encoding genes which were downregulated similar to the effects observed for G9P[13]. CONCLUSIONS: Our results provide novel data highlighting the unique aspects of the RVC-associated host cellular signalling and suggest that increased upregulation of the key antiviral factors maybe one of the mechanisms responsible for RVC age-specific characteristics and its inability to replicate in most cell cultures.


Assuntos
Gastroenterite , Infecções por Rotavirus , Rotavirus , Doenças dos Suínos , Animais , Suínos , Rotavirus/genética , Transcriptoma , Infecções por Rotavirus/veterinária , Filogenia , Genótipo
5.
Viruses ; 15(7)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37515094

RESUMO

Although rotavirus A (RVA) is the primary cause of acute viral gastroenteritis in children and young animals, mechanisms of its replication and pathogenesis remain poorly understood. We previously demonstrated that the neuraminidase-mediated removal of terminal sialic acids (SAs) significantly enhanced RVA-G9P[13] replication, while inhibiting RVA-G5P[7] replication. In this study, we compared the transcriptome responses of porcine ileal enteroids (PIEs) to G5P[7] vs. G9P[13] infections, with emphasis on the genes associated with immune response, cholesterol metabolism, and host cell attachment. The analysis demonstrated that G9P[13] infection led to a robust modulation of gene expression (4093 significantly modulated genes vs. 488 genes modulated by G5P[7]) and a significant modulation of glycosyltransferase-encoding genes. The two strains differentially affected signaling pathways related to immune response, with G9P[13] mostly upregulating and G5P[7] inhibiting them. Both RVAs modulated the expression of genes encoding for cholesterol transporters. G9P[13], but not G5P[7], significantly affected the ceramide synthesis pathway known to affect both cholesterol and glycan metabolism. Thus, our results highlight the unique mechanisms regulating cellular response to infection caused by emerging/re-emerging and historical RVA strains relevant to RVA-receptor interactions, metabolic pathways, and immune signaling pathways that are critical in the design of effective control strategies.


Assuntos
Gastroenterite , Infecções por Rotavirus , Rotavirus , Suínos , Animais , Genoma Viral , Genótipo , Rotavirus/genética , Gastroenterite/genética , Imunidade Inata , Filogenia
6.
Front Immunol ; 14: 1188757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180172

RESUMO

Rotavirus A (RVA) causes ~200,000 diarrheal deaths annually in children <5yrs, mostly in low- and middle-income countries. Risk factors include nutritional status, social factors, breastfeeding status, and immunodeficiency. We evaluated the effects of vitamin A (VA) deficiency/VA supplementation and RVA exposure (anamnestic) on innate and T cell immune responses in RVA seropositive pregnant and lactating sows and passive protection of their piglets post-RVA challenge. Sows were fed VA deficient (VAD) or sufficient (VAS) diets starting at gestation day (GD)30. A subset of VAD sows received VA supplementation from GD|76 (30,000IU/day, VAD+VA). Sows (6 groups) were inoculated with porcine RVA G5P[7] (OSU strain) or Minimal Essential Medium (mock) at GD~90: VAD+RVA; VAS+RVA; VAD+VA+RVA; VAD-mock; VAS-mock; and VAD+VA-mock. Blood, milk, and gut-associated tissues were collected from sows at several time points to examine innate [natural killer (NK), dendritic (DC) cells], T cell responses and changes in genes involved in the gut-mammary gland (MG)-immunological axis trafficking. Clinical signs of RVA were evaluated post inoculation of sows and post-challenge of piglets. We observed decreased frequencies of NK cells, total and MHCII+ plasmacytoid DCs, conventional DCs, CD103+ DCs and CD4+/CD8+ and T regulatory cells (Tregs) and NK cell activity in VAD+RVA sows. Polymeric Ig receptor and retinoic acid receptor alpha (RARα) genes were downregulated in mesenteric lymph nodes and ileum of VAD+RVA sows. Interestingly, RVA-specific IFN-γ producing CD4+/CD8+ T cells were increased in VAD-Mock sows, coinciding with increased IL-22 suggesting inflammation in these sows. VA supplementation to VAD+RVA sows restored frequencies of NK cells and pDCs, and NK activity, but not tissue cDCs and blood Tregs. In conclusion, similar to our recent observations of decreased B cell responses in VAD sows that led to decreased passive immune protection of their piglets, VAD impaired innate and T cell responses in sows, while VA supplementation to VAD sows restored some, but not all responses. Our data reiterate the importance of maintaining adequate VA levels and RVA immunization in pregnant and lactating mothers to achieve optimal immune responses, efficient function of the gut-MG-immune cell-axis and to improve passive protection of their piglets.


Assuntos
Infecções por Rotavirus , Rotavirus , Deficiência de Vitamina A , Gravidez , Suínos , Animais , Feminino , Vitamina A/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Lactação , Suplementos Nutricionais , Imunidade
7.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36749632

RESUMO

We assessed vaccine-induced antibody responses to the SARS-CoV-2 ancestral virus and Omicron variant before and after booster immunization in 57 patients with B cell malignancies. Over one-third of vaccinated patients at the pre-booster time point were seronegative, and these patients were predominantly on active cancer therapies such as anti-CD20 monoclonal antibody. While booster immunization was able to induce detectable antibodies in a small fraction of seronegative patients, the overall booster benefit was disproportionately evident in patients already seropositive and not receiving active therapy. While ancestral virus- and Omicron variant-reactive antibody levels among individual patients were largely concordant, neutralizing antibodies against Omicron tended to be reduced. Interestingly, in all patients, including those unable to generate detectable antibodies against SARS-CoV-2 spike, we observed comparable levels of EBV- and influenza-reactive antibodies, demonstrating that B cell-targeting therapies primarily impair de novo but not preexisting antibody levels. These findings support rationale for vaccination before cancer treatment.


Assuntos
COVID-19 , Neoplasias , Humanos , Vacinas contra COVID-19 , Formação de Anticorpos , SARS-CoV-2 , Neoplasias/terapia , Anticorpos Monoclonais , Anticorpos Antivirais
8.
Nutrients ; 14(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501067

RESUMO

Vitamin A (VA) is critical for many biological processes, including embryonic development, hormone production and function, the maintenance and modulation of immunity, and the homeostasis of epithelium and mucosa. Specifically, VA affects cell integrity, cytokine production, innate immune cell activation, antigen presentation, and lymphocyte trafficking to mucosal surfaces. VA also has been reported to influence the gut microbiota composition and diversity. Consequently, VA deficiency (VAD) results in the imbalanced production of inflammatory and immunomodulatory cytokines, intestinal inflammation, weakened mucosal barrier functions, reduced reactive oxygen species (ROS) and disruption of the gut microbiome. Although VAD is primarily known to cause xerophthalmia, its role in the impairment of anti-infectious defense mechanisms is less defined. Infectious diseases lead to temporary anorexia and lower dietary intake; furthermore, they adversely affect VA status by interfering with VA absorption, utilization and excretion. Thus, there is a tri-directional relationship between VAD, immune response and infections, as VAD affects immune response and predisposes the host to infection, and infection decreases the intestinal absorption of the VA, thereby contributing to secondary VAD development. This has been demonstrated using nutritional and clinical studies, radiotracer studies and knockout animal models. An in-depth understanding of the relationship between VAD, immune response, gut microbiota and infections is critical for optimizing vaccine efficacy and the development of effective immunization programs for countries with high prevalence of VAD. Therefore, in this review, we have comprehensively summarized the existing knowledge regarding VAD impacts on immune responses to infections and post vaccination. We have detailed pathological conditions associated with clinical and subclinical VAD, gut microbiome adaptation to VAD and VAD effects on the immune responses to infection and vaccines.


Assuntos
Microbioma Gastrointestinal , Deficiência de Vitamina A , Animais , Gravidez , Feminino , Deficiência de Vitamina A/metabolismo , Vitamina A , Citocinas , Modelos Animais
9.
Viruses ; 14(11)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36366453

RESUMO

The aim of this study was to determine the impact of vitamin A deficiency (VAD)/supplementation (±VA) and group A RV (RVA) maternal immunization of RVA seropositive multiparous pregnant sows, on their immune responses (anamnestic response) and on passive protection of their piglets against RVA challenge. Our results showed that VAD- mock sows had increased RVA RNA shedding at 1-5 days post piglet RVA challenge, and their litters had increased RVA shedding and diarrhea frequency throughout the experiment. VAD decreased memory B cell frequencies while VA supplementation increased RVA specific IgA/IgG antibody (Ab) secreting cell (ASC) numbers in blood, milk, and tissues of RVA inoculated VAD sows. The increased numbers of RVA specific IgA/IgG ASCs in blood, milk/colostrum, intestinal contents, and tissues in VA supplemented VAD sows, suggest a role of VA in B cell immunity and trafficking to tissues. We also observed that RVA inoculated sows had the highest viral neutralizing Ab titers in serum and milk while VA supplementation of VAD sows and RVA inoculation increased IgA+ B cell frequencies in sow colostrum. In summary, we demonstrated that daily oral VA-supplementation (2nd trimester-throughout lactation) to RVA inoculated VAD sows improved the function of their gut-mammary-IgA immunological axis, reducing viral RNA shedding, diarrhea, and increasing weight gain in suckling piglets.


Assuntos
Rotavirus , Gravidez , Suínos , Animais , Feminino , Vitamina A , Imunidade Adaptativa , Leite , Imunoglobulina A , Suplementos Nutricionais , Diarreia/prevenção & controle
10.
mSphere ; 7(5): e0027022, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36073800

RESUMO

Human rotavirus (HRV) is a major cause of childhood diarrhea in developing countries where widespread malnutrition contributes to the decreased oral vaccine efficacy and increased prevalence of other enteric infections, which are major concerns for global health. Neonatal gnotobiotic (Gn) piglets closely resemble human infants in their anatomy, physiology, and outbred status, providing a unique model to investigate malnutrition, supplementations, and HRV infection. To understand the molecular signatures associated with immune enhancement and reduced diarrheal severity by Escherichia coli Nissle 1917 (EcN) and tryptophan (TRP), immunological responses and global nontargeted metabolomics and lipidomics approaches were investigated on the plasma and fecal contents of malnourished pigs transplanted with human infant fecal microbiota and infected with virulent (Vir) HRV. Overall, EcN + TRP combined (rather than individual supplement action) promoted greater and balanced immunoregulatory/immunostimulatory responses associated with greater protection against HRV infection and disease in malnourished humanized piglets. Moreover, EcN + TRP treatment upregulated the production of several metabolites with immunoregulatory/immunostimulatory properties: amino acids (N-acetylserotonin, methylacetoacetyl-CoA), lipids (gamma-butyrobetaine, eicosanoids, cholesterol-sulfate, sphinganine/phytosphingosine, leukotriene), organic compound (biliverdin), benzenoids (gentisic acid, aminobenzoic acid), and nucleotides (hypoxathine/inosine/xanthine, cytidine-5'-monophosphate). Additionally, the levels of several proinflammatory metabolites of organic compounds (adenosylhomocysteine, phenylacetylglycine, urobilinogen/coproporphyrinogen) and amino acid (phenylalanine) were reduced following EcN + TRP treatment. These results suggest that the EcN + TRP effects on reducing HRV diarrhea in neonatal Gn pigs were at least in part due to altered metabolites, those involved in lipid, amino acid, benzenoids, organic compounds, and nucleotide metabolism. Identification of these important mechanisms of EcN/TRP prevention of HRV diarrhea provides novel targets for therapeutics development. IMPORTANCE Human rotavirus (HRV) is the most common cause of viral gastroenteritis in children, especially in developing countries, where the efficacy of oral HRV vaccines is reduced. Escherichia coli Nissle 1917 (EcN) is used to treat enteric infections and ulcerative colitis while tryptophan (TRP) is a biomarker of malnutrition, and its supplementation can alleviate intestinal inflammation and normalize intestinal microbiota in malnourished hosts. Supplementation of EcN + TRP to malnourished humanized gnotobiotic piglets enhanced immune responses and resulted in greater protection against HRV infection and diarrhea. Moreover, EcN + TRP supplementation increased the levels of immunoregulatory/immunostimulatory metabolites while decreasing the production of proinflammatory metabolites in plasma and fecal samples. Profiling of immunoregulatory and proinflammatory biomarkers associated with HRV perturbations will aid in the identification of treatments against HRV and other enteric diseases in malnourished children.


Assuntos
Infecções por Escherichia coli , Transplante de Microbiota Fecal , Desnutrição , Infecções por Rotavirus , Triptofano , Animais , Humanos , Lactente , Aminobenzoatos , Biliverdina/metabolismo , Colesterol , Coenzima A/metabolismo , Coproporfirinogênios , Citidina/metabolismo , Diarreia , Escherichia coli/metabolismo , Vida Livre de Germes , Inosina/metabolismo , Lipídeos , Desnutrição/terapia , Desnutrição/complicações , Metaboloma , Microbiota , Nucleotídeos/metabolismo , Fenilalanina/metabolismo , Rotavirus , Sulfatos , Suínos , Triptofano/farmacologia , Urobilinogênio/metabolismo , Xantinas
11.
Viruses ; 14(8)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016447

RESUMO

Rotaviruses (RVs) are a significant cause of severe diarrheal illness in infants and young animals, including pigs. Group C rotavirus (RVC) is an emerging pathogen increasingly reported in pigs and humans worldwide, and is currently recognized as the major cause of gastroenteritis in neonatal piglets that results in substantial economic losses to the pork industry. However, little is known about RVC pathogenesis due to the lack of a robust cell culture system, with the exception of the RVC Cowden strain. Here, we evaluated the permissiveness of porcine crypt-derived 3D and 2D intestinal enteroid (PIE) culture systems for RVC infection. Differentiated 3D and 2D PIEs were infected with porcine RVC (PRVC) Cowden G1P[1], PRVC104 G3P[18], and PRVC143 G6P[5] virulent strains, and the virus replication was measured by qRT-PCR. Our results demonstrated that all RVC strains replicated in 2D-PIEs poorly, while 3D-PIEs supported a higher level of replication, suggesting that RVC selectively infects terminally differentiated enterocytes, which were less abundant in the 2D vs. 3D PIE cultures. While cellular receptors for RVC are unknown, target cell surface carbohydrates, including histo-blood-group antigens (HBGAs) and sialic acids (SAs), are believed to play a role in cell attachment/entry. The evaluation of the selective binding of RVCs to different HBGAs revealed that PRVC Cowden G1P[1] replicated to the highest titers in the HBGA-A PIEs, while PRVC104 or PRVC143 achieved the highest titers in the HBGA-H PIEs. Further, contrasting outcomes were observed following sialidase treatment (resulting in terminal SA removal), which significantly enhanced Cowden and RVC143 replication, but inhibited the growth of PRVC104. These observations suggest that different RVC strains may recognize terminal (PRVC104) as well as internal (Cowden and RVC143) SAs on gangliosides. Finally, several cell culture additives, such as diethylaminoethyl (DEAE)-dextran, cholesterol, and bile extract, were tested to establish if they could enhance RVC replication. We observed that only DEAE-dextran significantly enhanced RVC attachment, but it had no effect on RVC replication. Additionally, the depletion of cellular cholesterol by MßCD inhibited Cowden replication, while the restoration of the cellular cholesterol partially reversed the MßCD effects. These results suggest that cellular cholesterol plays an important role in the replication of the PRVC strain tested. Overall, our study has established a novel robust and physiologically relevant system to investigate RVC pathogenesis. We also generated novel, experimentally derived evidence regarding the role of host glycans, DEAE, and cholesterol in RVC replication, which is critical for the development of control strategies.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Rotavirus , Rotavirus , Animais , Antígenos de Grupos Sanguíneos/metabolismo , Colesterol/metabolismo , Humanos , Ácidos Siálicos/metabolismo , Suínos
12.
Front Immunol ; 13: 826268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585989

RESUMO

Malnutrition refers to inadequate energy and/or nutrient intake. Malnutrition exhibits a bidirectional relationship with infections whereby malnutrition increases risk of infections that further aggravates malnutrition. Severe malnutrition (SM) is the main cause of secondary immune deficiency and mortality among children in developing countries. SM can manifest as marasmus (non-edematous), observed most often (68.6% of all malnutrition cases), kwashiorkor (edematous), detected in 23.8% of cases, and marasmic kwashiorkor, identified in ~7.6% of SM cases. Marasmus and kwashiorkor occur due to calorie-energy and protein-calorie deficiency (PCD), respectively. Kwashiorkor and marasmic kwashiorkor present with reduced protein levels, protein catabolism rates, and altered levels of micronutrients leading to uncontrolled oxidative stress, exhaustion of anaerobic commensals, and proliferation of pathobionts. Due to these alterations, kwashiorkor children present with profoundly impaired immune function, compromised intestinal barrier, and secondary micronutrient deficiencies. Kwashiorkor-induced alterations contribute to growth stunting and reduced efficacy of oral vaccines. SM is treated with antibiotics and ready-to-use therapeutic foods with variable efficacy. Kwashiorkor has been extensively investigated in gnotobiotic (Gn) mice and piglet models to understand its multiple immediate and long-term effects on children health. Due to numerous physiological and immunological similarities between pigs and humans, pig represents a highly relevant model to study kwashiorkor pathophysiology and immunology. Here we summarize the impact of kwashiorkor on children's health, immunity, and gut functions and review the relevant findings from human and animal studies. We also discuss the reciprocal interactions between PCD and rotavirus-a highly prevalent enteric childhood pathogen due to which pathogenesis and immunity are affected by childhood SM.


Assuntos
Kwashiorkor , Desnutrição , Desnutrição Proteico-Calórica , Rotavirus , Animais , Criança , Vida Livre de Germes , Humanos , Kwashiorkor/complicações , Kwashiorkor/metabolismo , Camundongos , Desnutrição Proteico-Calórica/complicações , Desnutrição Proteico-Calórica/metabolismo , Suínos
13.
Emerg Microbes Infect ; 11(1): 699-702, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35156544

RESUMO

Here we review the existing evidence of animal alphacoronaviruses (Alphacoronavirus 1 species) circulating in human patients with acute respiratory illness. Thus far, the viruses similar to canine, feline and porcine alphacoronaviruses (including the most recent CCoV-HuPn-2018 and HuCCoV_Z19) have been detected in humans in Haiti, Malaysia, Thailand, and USA. The available data suggest that these viruses emerged in different geographic locations independently and have circulated in humans for at least 20 years. Additional studies are needed to investigate their prevalence and disease impact.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Animais , Gatos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Cães , Humanos , Malásia , Filogenia , Sistema Respiratório , Suínos , Tailândia
14.
Pathogens ; 11(1)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35056027

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.

15.
Vaccines (Basel) ; 10(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062744

RESUMO

Human rotavirus (HRV) infection is a major cause of viral gastroenteritis in young children worldwide. Current oral vaccines perform poorly in developing countries where efficacious vaccines are needed the most. Therefore, an alternative affordable strategy to enhance efficacy of the current RV vaccines is necessary. This study evaluated the effects of colonization of neonatal gnotobiotic (Gn) pigs with Escherichia coli Nissle (EcN) 1917 and Lacticaseibacillus rhamnosus GG (LGG) probiotics on immunogenicity and protective efficacy of oral attenuated (Att) HRV vaccine. EcN-colonized pigs had reduced virulent HRV (VirHRV) shedding and decreased diarrhea severity compared with the LGG-colonized group. They also had enhanced HRV-specific IgA antibody titers in serum and antibody secreting cell numbers in tissues pre/post VirHRV challenge, HRV-specific IgA antibody titers in intestinal contents, and B-cell subpopulations in tissues post VirHRV challenge. EcN colonization also enhanced T-cell immune response, promoted dendritic cells and NK cell function, reduced production of proinflammatory cytokines/Toll like receptor (TLR), and increased production of immunoregulatory cytokines/TLR expression in various tissues pre/post VirHRV challenge. Thus, EcN probiotic adjuvant with AttHRV vaccine enhances the immunogenicity and protective efficacy of AttHRV to a greater extent than LGG and it can be used as a safe and economical oral vaccine adjuvant.

16.
Clin Infect Dis ; 74(3): 446-454, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34013321

RESUMO

BACKGROUND: During the validation of a highly sensitive panspecies coronavirus (CoV) seminested reverse-transcription polymerase chain reaction (RT-PCR) assay, we found canine CoV (CCoV) RNA in nasopharyngeal swab samples from 8 of 301 patients (2.5%) hospitalized with pneumonia during 2017-2018 in Sarawak, Malaysia. Most patients were children living in rural areas with frequent exposure to domesticated animals and wildlife. METHODS: Specimens were further studied with universal and species-specific CoV and CCoV 1-step RT-PCR assays, and viral isolation was performed in A72 canine cells. Complete genome sequencing was conducted using the Sanger method. RESULTS: Two of 8 specimens contained sufficient amounts of CCoVs as confirmed by less-sensitive single-step RT-PCR assays, and 1 specimen demonstrated cytopathic effects in A72 cells. Complete genome sequencing of the virus causing cytopathic effects identified it as a novel canine-feline recombinant alphacoronavirus (genotype II) that we named CCoV-human pneumonia (HuPn)-2018. Most of the CCoV-HuPn-2018 genome is more closely related to a CCoV TN-449, while its S gene shared significantly higher sequence identity with CCoV-UCD-1 (S1 domain) and a feline CoV WSU 79-1683 (S2 domain). CCoV-HuPn-2018 is unique for a 36-nucleotide (12-amino acid) deletion in the N protein and the presence of full-length and truncated 7b nonstructural protein, which may have clinical relevance. CONCLUSIONS: This is the first report of a novel canine-feline recombinant alphacoronavirus isolated from a human patient with pneumonia. If confirmed as a pathogen, it may represent the eighth unique coronavirus known to cause disease in humans. Our findings underscore the public health threat of animal CoVs and a need to conduct better surveillance for them.


Assuntos
Infecções por Coronavirus , Coronavirus Canino , Doenças do Cão , Pneumonia , Animais , Gatos , Infecções por Coronavirus/veterinária , Coronavirus Canino/genética , Cães , Humanos , Malásia , Filogenia
17.
Viruses ; 15(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36680135

RESUMO

Live attenuated vaccines (LAVs) replicate in the respiratory/oral mucosa, mimic natural infection, and can induce mucosal and systemic immune responses to the full repertoire of SARS-CoV-2 structural/nonstructural proteins. Generally, LAVs produce broader and more durable protection than current COVID-19 vaccines. We generated a temperature-sensitive (TS) SARS-CoV-2 mutant TS11 via cold-adaptation of the WA1 strain in Vero E6 cells. TS11 replicated at >4 Log10-higher titers at 32 °C than at 39 °C. TS11 has multiple mutations, including those in nsp3, a 12-amino acid-deletion spanning the furin cleavage site of the S protein and a 371-nucleotide-deletion spanning the ORF7b-ORF8 genes. We tested the pathogenicity and protective efficacy of TS11 against challenge with a heterologous virulent SARS-CoV-2 D614G strain 14B in Syrian hamsters. Hamsters were randomly assigned to mock immunization-challenge (Mock-C) and TS11 immunization-challenge (TS11-C) groups. Like the mock group, TS11-vaccinated hamsters did not show any clinical signs and continuously gained body weight. TS11 replicated well in the nasal cavity but poorly in the lungs and caused only mild lesions in the lungs. After challenge, hamsters in the Mock-C group lost weight. In contrast, the animals in the TS11-C group continued gaining weight. The virus titers in the nasal turbinates and lungs of the TS11-C group were significantly lower than those in the Mock-C group, confirming the protective effects of TS11 immunization of hamsters. Histopathological examination demonstrated that animals in the Mock-C group had severe pulmonary lesions and large amounts of viral antigens in the lungs post-challenge; however, the TS11-C group had minimal pathological changes and few viral antigen-positive cells. In summary, the TS11 mutant was attenuated and induced protection against disease after a heterologous SARS-CoV-2 challenge in Syrian hamsters.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Mesocricetus , SARS-CoV-2/genética , Temperatura , Vacinas Atenuadas/genética
19.
Front Immunol ; 12: 643206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267745

RESUMO

The growing world population (7.8 billion) exerts an increased pressure on the cattle industry amongst others. Intensification and expansion of milk and beef production inevitably leads to increased risk of infectious disease spread and exacerbation. This indicates that improved understanding of cattle immune function is needed to provide optimal tools to combat the existing and future pathogens and improve food security. While dairy and beef cattle production is easily the world's most important agricultural industry, there are few current comprehensive reviews of bovine immunobiology. High-yielding dairy cattle and their calves are more vulnerable to various diseases leading to shorter life expectancy and reduced environmental fitness. In this manuscript, we seek to fill this paucity of knowledge and provide an up-to-date overview of immune function in cattle emphasizing the unresolved challenges and most urgent needs in rearing dairy calves. We will also discuss how the combination of available preventative and treatment strategies and herd management practices can maintain optimal health in dairy cows during the transition (periparturient) period and in neonatal calves.


Assuntos
Doenças dos Bovinos/imunologia , Bovinos/imunologia , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA